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ABSTRACT

This paper presen~s novel scalar transmission

line matrix simulating the propagation of a Hert-

zian potential in three–dimensional space. The new

method is numerically more efficient than the tra-

ditional TLM method.

INTRODUCTION

In the traditional Transmission Line Matrix

(TLM) Method of numerical analysis cl], the propa-

gation of all aix components of the electromagnetic

field is simulated by the propagation of corres-

ponding voltage and current impulses in a compli–

cated hybrid transmission line mesh. This leads to

considerable memory and cpu time requirements. In
order to reduce these requirements we propose the
TLM simulation of Hertzian potentials from which

the field components as well as the eigenvalues of

resonant systems can be obtained. Since Hertzian

potentials satiafy the scalar wave equation, only a

scalar TLM network is required for three-dimensio-

nal simulations.

ANALYSIS OF THE SCALAR TLM NETWORK

Consider a unit cell of the new three–dimensio-

nal network which consists of a two–dimensional TLM

network to which additional transmission lines are

connected orthogonally at each junction as shown in
Fig. 1. Since the dimensions of a unit cell mustbe
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Fig. 1 - A unit cell of the three-dimensional
scalar TLM network.

small compared with the wavelength, the voltages at

the six ports are effectively equal to the voltage

at the node. Furthermore, let us assume that there
is no coupling between the lines. Under these as-
sumptions, the following approximate first-order

equations are obtained:
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These coupled equations may be uncoupled, yielding

the following second-order differential equations
in V and ~:
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(2b) may not look like

term involving the dou-

consequence ~f (lb).

Note that although equation

a wave equati~n, the second

ble ~url of I is zero as a

Finally, V as well as each component of ~ satisfy

the following scalar wave equation:

2

(V2 - 3LC~) ~ (Z,t) = O
at

(3)

The propagation of this scalar wave can be easily

simulated on the scalar three-dimensional TLM net-

work using the same algorithms as the conventional

TLM method.

NUMERICAL SIMULATION OF A SCALAR WAVE

The scalar wave function @ can represent ei-
ther a field component or a Hertzian potential.

The physical nature of $ determines its behaviour

at boundaries. For instance, ~ will be subject to
a reflection coefficient of –1 at a lossless elec–
tric wall if it represents a tangential electric or

a normal magnetic field. A normal electric or a
tangential magnetic field will be reflected with a

coefficient of +1 in the same circumatancea.

Once the boundary conditions are properly de-

termined, the impulse response of the scalar net-
work is found by iteration exactly as in the case

of the classical two-dimensional TLM procedure.

The scattering matrix of a three–dimensional

node in the scalar network is:
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from unity
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INHOMONGENEOUSSTNJCTURES

with a. dielectric constant Er different

can be simulated by loading all nodes
inside these media with a capacitive stub. If the

normalized characteristic admittance of the stub is

Yo, the phase velocity and the scattering matrix of
a stub-loaded node inside the medium will become
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The additional element of E S 3 represents the pulse
on the stub line. As in the conventional TLM si-

mulation, the capacitive loading of the nodes re–

duces the phase velocity and the wave impedance in

the medium, and it automatically satisfies the in-

terface condition when simulating, for example, an

E-field component which is tangential, or a magne-

tic-type Hertzian potential which is normal to the

dielectric interface. Further studies are required
for the simulation of E-field components which are

normal to such a dielectric interface (or an elec-

tric-type Hertzian potential normal to that inter-
face) . Such a simulation requires the introduction
of a correction factor which is different from that

used in the conventional TLM procedure.

APPLICATION TO RECTANGLMR RESONATORS

In order to demonstrate the scalar TLM perfor-
mance, the first few eigenvalues of two rectangular

cavities (one empty and the other dielectric slab

loaded) were computed and then compared with exact

analytical results. The empty resonator (Fig. 2)

was analyzed with both the conventional and the

scalar TLM method using the same mesh size and the

same number of iterations. Table I compares the
results and shows that the scalar method is more

accurate (and seven times faster than the conventio-
nal one). Furthermore, memory size required is four

times smaller for the scalar method.

The slab–loaded resonator (Fig. 3) was analy-

zed by simulating the propagation of a magnetic-

type Hertzian potential normal to the slab-air in-

terfaces. Table IT compares the results with ana-

lytical results obtained by solving the transverse

resonance condition for the first two LSE-modes.
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DISCUSSION AND CONCLUSION

The classical three-dimensional TLM method of

analysis can be simplified by simulating only one

field component or a Hertzian potential in a scalar

network. Such a network could be realized by a cu-

bic array of coaxial lines shunt-connected at the

nodes. The voltage propagating in such a network

satisfies the scalar homogeneous wave equation.

Boundary conditions at walls or interfaces depend

on the physical nature of the simulated wave quan–

tity.

Two examples demonstrate the performance of the
method and compare it with the conventional TLM-me-

thod . Furthermore, all methods proposed to reduce

ttme and memory requirements such as variable mesh

size and window optimization can be applied to the
scalar method.

Fig. 2 - Empty Cavity evaluated with the scalar T. L. M.-method
(a = 12 Ai, b = 6 A9., c = 8 Lt)

I ANJILYJIC SCALAR d EONVENTIOIiALA
T, L, PI. ! %

TE101 0,07511 !),07480 i 0,4 0, !17489 0,4

W1O 0,09317 0.99299 0118 0, !)9249 0,72

TN
1

0,10417 0,10379 0,36 0,10337 0,76

TE1ll 0,11219 0,11199 0,18

TM210 Cl,117G5 0,11759 0,22

Table I - comparison of the first six normalized resonant
frequencies of a homogeneously fillzd reccanwla:
cavity with values C&tained by the scalar and the
cor. ventional TLM methods.
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Fig. 3 - Dielectric loaded cavity evaluated with
scalar T. L.M.

s 1ANALYTIC SCALAR
MODE A VALUE FRROB(%)

LSE1ol
1/6 0,0522 0,0516 1!15

1/3 1 0,0445 0,0440 1.12

~/6 ~,fJ988 0,0935 0!3

%01 1/3 II 0,0776 0,0759 2,19
u 1 I I

Table 11 - First two LSE mo@s evaluated with the
scalar T. L.M. (Normalized Resonant Freauenciesl
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