THE SIMULATION OF THREE-DIMENSIONAL WAVE
PROPAGATION BY A SCALAR TLM MODEL

Dok Hee CHOI and Wolfgang J.R. HOEFER

Department of Electrical Engineering
University of Ottawa
Ottawa, Ontario, CANADA KIN 6N5

ABSTRACT

This paper presents.a novel scalar transmission
line matrix simulating the propagation of a Hert-
zian potential in three-dimensional space. The new
method is numerically more efficient than the tra-
ditional TLM method.

INTRODUCTION

In the traditional Transmission Line Matrix
(TLM) Method of numerical analysis [1], the propa-
gation of all six components of the electromagnetic
field is simulated by the propagation of corres-
ponding voltage and current impulses in a compli-
cated hybrid transmission line mesh. This leads to
considerable memory and cpu time requirements., In
order to reduce these requirements we propose the
TLM simulation of Hertzian potentials from which
the field components as well as the eigenvalues of
resonant systems can be obtained. Since Hertzian
potentials satisfy the scalar wave equation, only a
scalar TLM network is required for three-dimensio-
nal simulations.

ANALYSIS OF THE SCALAR TLM NETWORK

Consider a unit cell of the new three-dimensio-
nal network which consists of a two-dimensional TLM
network to which additional transmission lines are
connected orthogonally at each junction as shown in
Fig. 1. Since the dimensions of a unit cell must be

Fig. 1 - A unit cell of the three-dimensional
scalar TLM network.

small compared with the wavelength, the voltages at
the six ports are effectively equal to the voltage
at the node. Furthermore, let us assume that there
is no coupling between the lines. Under these as-
sumptions, the following approximate first-order
equations are obtained:
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These coupled equations may be uncoupled, yielding
the following second-order differential equations
in V and T:
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Note that although equation (2b) may not look like
a wave equatign, the second term involving the dou-
ble cqurl of I is zero as a consequence Qf (1b).
Finally, V as well as each component of T satisfy
the following scalar wave equation:
2 52 >
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The propagation of this scalar wave can be easily
simulated on the scalar three~dimensional TLM net-
work using the same algorithms as the conventional
TLM method.

NUMERICAL SIMULATION OF A SCALAR WAVE

The scalar wave function { can represent ei-
ther a field component or a Hertzian potential.
The physical nature of ¥ determines its behaviour
at boundaries. For instance, Y will be subject to
a reflection coefficient of -1 at a lossless elec-
tric wall if it represents a tangential electric or
a normal magnetic field. A normal electric or a
tangential magnetic field will be reflected with a
coefficient of +1 in the same circumstances.

Once the boundary conditions are properly de-
termined, the impulse response of the scalar net-
work is found by iteration exactly as in the case
of the classical two-dimensional TLM procedure.

The scattering matrix of a three-dimensional
node in the scalar network is:
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r-—2 1 1 1 1 lT
1 -2 1 1 1 1
1 1 -2 1 1
rs1=% 11 1 1 -2 1 ()
1 1 1 -2
L,l 1 1 1 1 - i
INHOMONGENEOUS STRUCTURES
Media with a dielectric constant €, different

from unity can be simulated by loading all nodes
inside these media with a capacitive stub. If the
normalized characteristic admittance of the stub is
Yo, the phase velocity and the scattering matrix of
a stub-loaded node inside the medium will become

vph = c/V3(1 + yo/6) (5)
and
=y +4) 2 2 2 2 2
2 ~(y ) 2 2 2
1 2 2 ~(y+4) 2 2 2
ls] = A 2 2 2 (740 2 2 6)
2 2 2 2 =(yt4) 2
2 2 2 2 2 (7 +4)
2 2 2 2 2 2

The additional element of [ S ] represents the pulse
on the stub line. As in the conventional TLM si-
mulation, the capacitive loading of the nodes re-
duces the phase velocity and the wave impedance in
the medium, and it automatically satisfies the in-
terface condition when simulating, for example, an
E-field component which is tangential, or a magne-
tic-type Hertzian potential which is normal to the
dielectric interface. Further studies are required
for the simulation of E-field components which are
normal to such a dielectric interface (or an elec-
tric-type Hertzian potential normal to that inter-
face). Such a simulation requires the introduction
of a correction factor which is different from that
used in the conventional TLM procedure.

APPLICATION TO RECTANGULAR RESONATORS

In order to demonstrate the scalar TLM perfor-
mance, the first few eigenvalues of two rectangular
cavities (one empty and the other dielectric slab
loaded) were computed and then compared with exact
analytical results, The empty resonator (Fig. 2)
was analyzed with both the conventional and the
scalar TLM method using the same mesh size and the
same number of iterations. Table I compares the
results and shows that the scalar method is more
accurate (and seven times faster than the conventio-
nal one). Furthermore, memory size required is four
times smaller for the scalar method.

The slab-loaded resonator (Fig. 3) was analy-
zed by simulating the propagation of a magnetic-
type Hertzian potential normal to the slab-air in-
terfaces. Table IT compares the results with ana-
lytical results obtained by solving the transverse
resonance condition for the first two LSE-modes.

Ref. [1] S. Akhtarzad, P.B. Johns, Proc. IEEE, vol.
122, no. 12, pp. 1344-48, Dec. 75.

DISCUSSION AND CONCLUSION

The classical three-dimensional TLM method of
analysis can be simplified by simulating only one
field component or a Hertzian potential in a scalar
network. Such a network could be realized by a cu-
bic array of coaxial lines shunt-connected at the
nodes. The voltage propagating in such a network
satisfies the scalar homogeneous wave equation.
Boundary conditions at walls or interfaces depend
on the physical nature of the simulated wave quan-—
tity.

Two examples demonstrate the performance of the
method and compare it with the conventional TLM-me-
thod, Furthermore, all methods proposed to reduce
time and memory requirements such as variable mesh
size and window optimization can be applied to the
scalar method.
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Fig. 2 - Empty Cavity evaluated with the scalar T.L.M.-method
(a =12 4%, b =6 42, ¢ =8 L)
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ANALYTIC SCALAR & LONVENTIONAL A
VALUE T.AM L2 TAM (7
TEqg; 0.07511 9,07480 [ 0.4 | 0.07480 0.4
™0 0.00317 0.09299 0,18 | 0.00249 |0.72
™o 0.10417 0.10379 .36 | 0.10337 |0.76
TEqqp 0,11219 0,11199 0,18
10 n,11785 0.11759 0,22

Table I - Comparison of the first six normalized resonant
frequencies of a homogeneously filled rectangular
cavity with values o3tained by the scalar and the
cor.ventional TLM methods.
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Fig. 3 - Dielectric loaded cavity evaluated with
scalar T.L.M.
S ANALYTIC | SCALAR
MODE A YALUE T.L.M,{ERROR(E)
1/6 0.0522 0.0516 1.15
LSEyp1
173 0.0445 0.0440 1.12
1/6 02,0983 0.0935 0.3
S 173 0.0776 0.0753 | 2.19

Table IT - First two LSE modes evaluated with the
scalar T.L.M. (Normalized Resonant Freauencies)
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